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In Part 1 (Kim & Yue 1989), we considered the second-order diffraction of a plane 
monochromatic incident wave by an axisymmetric body. A ring-source integral 
equation method in conjunction with a novel analytic free-surface integration in the 
entire local-wave-free domain was developed. To generalize the second-order theory 
to irregular waves, say described by a continuous spectrum, we consider in this paper 
the general second-order wave-body interactions in the presence of bichromatic 
incident waves and the resulting sum- and difference-frequency problems. For 
completeness, we also include the radiation problem and second-order motions of 
freely floating or elastically moored bodies. As in Part 1, the second-order sum- and 
difference-frequency potentials are obtained explicitly, revealing R number of 
interesting local behaviours of the second-order pressure. For illustration, the 
quadratic transfer functions (QTF’s) for the sum- and difference-frequency wave 
excitation and body response obtained from the present complete theory are 
compared to those of existing approximation methods for a number of simple 
geometries. It is found that contributions from the second-order potentials, typically 
neglected, can dominate the total load in many cases. 

1. Introduction 
Many compliant offshore structures are designed to have their natural frequencies 

of oscillations above and/or below that at  which significant ocean wave energy is 
present. This avoids possible large responses a t  wave frequencies due to linear 
excitations. When second-order effects are included in the presence of irregular 
waves, there are in general excitations at the sums and differences of the component 
frequencies. Although the magnitudes of these nonlinear effects are in general 
second-order, they may be of primary concern when such excitations are near the 
natural periods of body motions and when the corresponding damping forces are 
small. Typical examples are the low-frequency horizontal-plane motions of moored 
ships and vertical-plane motions of small-waterplane-area vessels for difference- 
frequency excitations ; and the high-frequency vertical-plane oscillations of tautly 
moored bodies such aq tension-leg platforms, and ‘ springing ’ vibrations of ship hulls 
for the sum-frequency forces. In these cases, the linearized theory often does not 
provide even a first approximation for predicting the loads and motions. 

For a single regular incident wave, the complete second-order diffraction solution 
for vertically axisymmetric bodies was presented in Part 1 (Kim & Yue 1989; 
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hereinafter referred to as KY -1). The second-order (double-frequency) potential and 
associated local quantities were obtained explicitly using a boundary-integral 
formulation involving general order free-surface ring-source Green functions. A 
powerful treatment of the requisite free-surface integral involving analytic 
integration of local-wave-free modes was developed resulting in rapid exponential 
convergence of the integral with truncation radius. The efficacy and accuracy of the 
method was established through systematic convergence tests and comparisons to 
available analytic and semi-analytic results. 

In this paper, we consider the generalization of the second-order theory to 
Gaussian irregular incident waves, say given by an amplitude spectrum. The 
deterministic problem in a two-term Volterra model (see $6) then consists of solving 
the second-order wave-body interactions a t  the sum and difference frequencies for all 
possible pairs of the incident wave frequency components. These second-order 
bichromatic problems are to be solved for the requisite sum- and difference- 
frequency quadratic transfer functions (QTF’s) for the forces, pressures, surface 
elevations, etc. corresponding to unit amplitudes of the incident components. Thus, 
we extend the formulation and numerical method of KY-I to the general case of 
bichromatic incident waves. For completeness, we also include the radiation problem 
and obtain second-order motions, for example for freely floating bodies in irregular 
waves. As in KY-I, the second-order sum- and difference-frequency potentials are 
calculated explicitly so that in addition to the corresponding sum- and difference- 
frequency force and motion QTF’s, local behaviours of the flow in the bifrequency 
domain are also obtained. 

The complete sum- and difference-frequency force calculation was first attempted 
by Loken (1986), although a number of important issues such as those associated 
with the simple truncation of the free-surface integral were not satisfactorily 
resolved. For the difference-frequency problem, some improvements were later made 
by Benshop, Hermans & Huijsmans (1987), Eatock Taylor, Hung & Mitchell (1988), 
and Matsui (1988), especially in the treatment of the free-surface integral. To avoid 
solving for the second-order potentials directly, the latter works employed an 
indirect formulation based on the use of an assisting radiation potential (Molin 1979; 
Lighthill 1979). Thus only integrated quantities such as forces and moments were 
obtained for the difference-frequency problem. Furthermore, despite refinements, 
the convergence of the free-surface integral was typically still only algebraic with 
truncation distance and consequently relatively large numerical quadrature inner 
regions were necessary. 

With the exception of these works, theoretical and computed results for the 
general second-order problem are rather scarce. The primary difficulty is clearly the 
need for the nonlinear (sum- and difference-frequency) potentials and/or the 
associated forces, etc. With the pressing needs for engineering solutions, a number of 
approximation methods for the force QTF’s have been proposed and widely used in 
applications. Examples include the methods of Newman (1974), Pinkster (1980), 
Standing & Dacunha (1982), and Marthinsen (1983) for slowly varying (difference- 
frequency) wave excitations ; and those of De Boom, Pinkster & Tan (1983), Herfjord 
& Nielsen (1986), and Petrauskas & Liu (1987) for sum-frequency forces. These 
simplifying approximations are usually justified on heuristic grounds and typically 
neglect one or more components of the complete second-order forcing. In the absence 
of a more complete solution, however, the general validity of a specific approxi- 
mation, and the relative superiority of one method over another have 
heretofore not been established. These questions are addressed extensively in 3 5,  
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where the approximated QTF’s are compared to the exact ones for a number of 
simple geometries. 

The mathematical formulation and numerical method for the two-frequency 
second-order problem generally follow that of KY-I for the monochromatic case. For 
completeness, an outline is given in $ 9 2 4 .  For numerical illustration we consider in 
$5  the diffraction (and radiation) of a uniform vertical circular cylinder of different 
depths, and also for a fixed and freely floating hemisphere. The complete sum- and 
difference-frequency QTF’s for plane unidirectional bichromatic incident waves of 
arbitrary frequencies are obtained for the wave excitation, pressure distribution and 
surface elevations. In addition to systematic convergence tests, the numerical results 
are also validated against semi-analytic solutions for the case of a uniform vertical 
circular cylinder which are developed in the Appendix. Given the complete 
excitation and response QTF’s and the incident wave spectrum, the stochastic 
properties of second-order wave excitations and body responses in Gaussian random 
seas can be readily calculated. This is briefly introduced in $6. 

2. Formulation of the second-order bichromatic problem 
We consider the first- and second-order interactions of plane bichromatic incident 

waves with a large three-dimensional body. Cartesian coordinates with the (2,  y)- 
plane in the quiescent free surface and z positive upward are chosen. Assuming 
potential flow and weak nonlinearities, we write the total velocity potential @ as a 
perturbation series with respect to the wave slope parameter E (6 < I ) :  

@ = €@(I) + €2@(*) + . . . . ( 2 . 1 ~ )  

Using (2.1a), expanding free-surface and body quantities in terms of Taylor series 
about mean positions, and collecting terms of equal order, the boundary-value 
problem at each order is linear and we can decompose @ into the incident (GI), 
diffraction (QD), and radiation (GR) potentials : 

@ = €( @p + @p + @p) + €2( @p + @g) f @p) + . . . . (2.1 b)  

A t  first order, the diffraction potential, @g), represents the scattered waves due to 
the presence of a fixed body, while the radiation potential, @$), represents radiated 
waves due to first-order body motions. A similar decomposition can be made at  
second order although the choice is in general not unique. A convenient and 
consistent definition is to let the diffraction potential, @g), represent the combined 
diffracted potential due to the presence of second-order incident waves as well as the 
forcing due to all the quadratic contributions of first-order quantities on the free 
surface and on the body (i.e. a second-order problem for a body either fixed or 
undergoing first-order motions only). The radiation potential, @g), then represents 
the outgoing waves due to second-order motions only, in the absence of ambient 
waves or first-order disturbances. This decomposition is consistent with the first- 
order problem in the sense that @i2) and @g) together give the total exciting forces 
for the second-order motions. Note that under the present decomposition, all the 
difficult second-order effects are confined to the ‘ diffraction ’ problem for @g), while 
the second-order radiation problem is now identical to that of a first-order problem 
but at  the respective sum and difference frequencies. 

In the presence of multiple incident wave components, it is sufficient at  second- 
order to consider the general problem of wave-body interactions for an arbitrary 
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bichromatic pair of incident components. In the presence of two plane incident waves 
of frequencies wl, w2,  then, we write for the first-order velocity potential @(l) : 

and the second-order potential as a superposition of sum- and difference-frequency 
terms : 

2 2  

1-1 1-1 
@@)(x, t )  = Re C {$-(x) e-iw-t + $+(x) e-iw+t), (2.3) 

where w- = w1 - w2 and w+ = w1 + w2. The sum- and difference-frequency potentials in 
(2.3), q5+ and +-, can be solved independently after separating the forcing terms and 
the boundary-value problem accordingly. 

Assuming unidirectional wave incidence from x = - 00 (say), wave amplitude A,, 
j = 1,2, and uniform but arbitrary water depth, h, the first-order incident potential 
is given by 

- igAi cosh k5(z + h)  eik,x, 
$11) = c 

w, coshklh 

where the frequency w5 and wavenumber kj satisfy the dispersion relationship : w; = 
kjg tanh (k, h ) ,  j = 1,2 ,  g being the gravitational acceleration. 

The second-order incident wave potential, @i2), satisfies the Laplace equation, no- 
flux condition on the sea bottom ( z  = -h) ,  and the inhomogeneous free-surface 
condition on z = 0 :  

where 

Upon substituting (2.2)-(2.4) into (2 .5)  and solving for @pfe), we obtain the sum- and 
difference-frequency second-order incident wave potentials (e.g. Bowers 1976) : 

7 (2 .6)  
- igA, A, k f (  1 - tanh2 k5 k) + 2kj k,( 1 - tanh k, h tanh k, h) where 7; = 

2w5 v+ - k+ tanh k+h 

cosh k-(z + h )  eik-z +; = &Yji+Yi-j*) cosh k-h 
and 

(2.7) 
-igA, A: k;( 1 - tanh2 k1 h) - 2k, k,( 1 + tanh k1 h tanh k, h )  where y- = 

In the above equations, an asterisk represents a complex conjugate, and v* and k* 
are defined respectively by 

31 2w5 v- - k- tanh k-h 

vf = wf2/g, k* = k, +_ k,. (2.8) 
One can easily check from (2 .6)  that 4: vanishes for deep water : k j  h, k, h 9 1. As the 
water depth decreases, the magnitude of 4: continues to increase, eventually blowing 
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up as the Ursell number for small kh and the use of Stokes expansion (2 .1 )  becomes 
restrictive (Ursell 1953). In  the limit of a single regular wave, w, -+ w,, q5: reduces to 
the well-known second-order uniform Stokes wave : 

- 3iwA2 cosh 2k(z + h) e2ikx 

sinh4 kh q5;= 8 

For the difference-frequency incident wave potential, $;, the contribution is finite 
in the general deep-water limit k, h,  k, h 4 1. For water depth large with respect to k,, 
8, but moderate relative to the difference-frequency wavenumber k-, say, k-h = 0(1), 
(2.6) gives 

- iA, A: Uj WE 

(a,- w l )  - (w, + q) tanh k-h 
cosh k-(z + h )  eik-x 

cosh k-h $Y - (2.104 

In the limit of water depth large compared to k-, k-h 4 1 ,  the difference-frequency 
potential has the form: 

(2.10b) 

In the limit of monochromatic incidence, w, + w l ,  the difference-frequency incident 
potential for infinite depth, (2.10b), approaches a finite limit, while (2.10a) becomes 
essentially a shallow-water wave of O(e2/w-) ,  and therefore only valid for small Ursell 
number. 

It is evident that the depth attenuations of second-order incident waves are 
determined by k* respectively for q5:, so that q5; in general penetrates deeper than 
#: especially for small frequency differences. The deep penetration of #; in narrow- 
banded seas is of importance to deep-draft bodies. 

We now consider the first- and second-order interactions of the bichromatic 
incident waves with a general three-dimensional freely floating body. For 
convenience, we define the first-order body disturbance potential, #, as a s sum of 
the first-order diffraction and radiation potentials : q5g) = &) + $g). This potential 
satisfies the Laplace equation in the undisturbed fluid volume, zero normal velocity 
on the bottom, z = -h ,  and the following boundary conditions on the mean free 
surface, S,, and the mean body position, S,: 

onS,: z = 0; 

plus a Sommerfeld radiation condition at  infinity, S, : 

on S,. 

(2.11a) 

( 2 . l l b )  

( 2 . 1 1 c )  

In (2 .11 ) ,  r represents the position vector on the body surface, p the radial distance 
from the origin, p2 = x2 + y2, and n = (nx, ny,  n,) the outward unit normal vector for 
the fluid. The first term on the right-hand side of the body boundary condition 
(2.11 b )  is associated with the diffraction potential, #g), and the second term with the 
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radiation problem, @). The translational (E) and rotational (a )  first-order motions 
in the presence of two incident wave frequencies have the forms 

2 

P ( x ,  t )  = Re [ej')(x) e-iwjt], <!') = (ti;), [$), @), ( 2 . 1 2 ~ )  

m ( ' ) ( ~ , t )  = R e x  [g)l)(~)e-~"j~],  (2 .12b)  

where the subscripts x, y, and z denote the translational and rotational modes with 
respect to the x-, y-, and z-axis, respectively. 

The solution for the first-order problem (2.11) is now classical and will not be 
further elaborated. The first-order potentials and motions are necessary to specify 
the inhomogeneous free-surface and body boundary condition forcing terms for the 
second-order problem. The inhomogeneous free-surface condition for the total 
second-order potential, @('), is given by (2.5) with @il) replaced by cW). The second- 
order body boundary condition can likewise be obtained by writing Taylor series 
expansions for the relevant variables on the instantaneous body surface with respect 
to the mean body position, S ,  (e.g. Ogilvie 1983). We define the second-order 
diffraction potential, @g), to be the solution of the boundary-value problem 
containing both the inhomogeneous free-surface and body-surface boundary 
conditions, i.e. a diffraction problem containing the quadratic contributions of all the 
firat-order waves plus the second-order incident wave but in the absence of second- 
order motions. The free-surface and body boundary conditions for @g) on the 
respective mean positions are 

f-1 

2 

= (a,, (l) 7 a(') yj , a(1)), z j  
j-1 

where 

and 

(2.13) 

In (2.14), V) = a/at(@)+a(*) x r ) , i  = 1,2, and H is a matrix whose elements are 
second order and are the quadratic products of the first-order rotational motions : 

(2.15) 

As pointed out by Ogilvie (1983), the expression of the H-matrix depends on the 
sequence of rotations. For (2.15) the order roll-pitch-yaw (4-5-6) is used. In the 
absence of first-order rotational motions, the body forcing term B in (2.14) is 
simplified : 

B(x, t )  = -n.(Z1'.V)V@'1'. (2.16) 

Since the free-surface and body-surface forcing terms Q and B in (2.13) and (2.14) 
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are quadratic products of first-order bichromatic quantities, they can be written in 
the form 2 2  

[ Q , B ] ( x , t )  = R e x  ~{[&',B+](X)~-~"~~+[Q-,B-](X)~-~~-~}. (2.17) 

The sum- and difference-frequency components respectively of the second-order 
diffraction potential, $6, then satisfy the following boundary value problems which 
can be solved independently : 

( 2 . 1 8 ~ )  

(2.186) 

* = O  o n z = - h ;  ( 2 . 1 8 ~ )  

f-11-1 

V2$& = 0 in the quiescent fluid volume ( z  < 0) ; 

(--0'2+9;)$6 = Q* on s,: z = 0; 

aZ 

(2 .18d)  

condition a t  infinity on S ,  ( p 4  00) .  (2.18e) 

In  (2.18b),  the sum- and difference-frequency free-surface forcing terms can be 
written in symmetric forms as follows: 

Q+ = 6(qi +a&), Q- = 6(a;+q;*); (2.19) 

(2 .21)  

The sum- and difference-frequency components of the body-surface forcing term B 
in (2.14) can be written in similar forms. Equation (2 .16) ,  for example, has the form: 

where 

(2.22) 

(2.23) 

(2.24) 

Finally, for the second-order radiation problem, $& satisfy the boundary-value 
problems similar to that given by (2.11) (for $g)) but substituting W* for w and k: 
for k (where k$ are the wavenumbers associated with w * ) ,  and the body boundary 
condition due to second-order motions : 

-- a" --iw*n.(c*+a* x r )  on#,. (2.25) 
an 

The second-order motions, S2) and a@), being written in the form 
2 2  

[E@),  d2)] ( x ,  t )  = Re x x {[<+, a+] (x) e-iw+t + [<-, a-] ( x )  e-iw-t}. (2.26) 

Thus the solution of $3 for the second-order hydrodynamic coefficients, say, is 
identical to that of a first-order radiation problem a t  the sum and difference 
frequencies. 

5-1 1-1 
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With the exception of the radiation condition (2.18e) for $6, the boundary-value 
problems for the second-order potentials are now complete. For monochromatic 
incident waves, an appropriate radiation condition for the double-frequency second- 
order potential was first obtained by Molin (1979) and adopted in KY-I. For the 
general bichromatic problem, the analysis can be extended in a straightforward way. 
Following Molin, we decompose $8, governed by the linear boundary-value problem 
(2.18), into a homogeneous, $&, and particular solution, $$, satisfying respectively 
the homogeneous and inhomogeneous free-surface conditions and jointly the 
inhomogeneous body-boundary condition. The homogeneous potential, @, then has 
the far-field behaviour of a free propagating wave : 

(2.27) 

The asymptotic behaviour of the particular potential, $6, is governed by that of the 
free-surface forcing, Q*. Q* contain all quadratic combinations of the first-order 
incident (I) and body disturbance (diffracted and radiated) (B) waves and may be 
represented symbolically as Q1B and QBB. From the first-order potentials, we have 

(2.28 a)  

(2.283) 

so that Q& - p-l, for p + 1, and the far-field behaviour of Q' is dominated by QIB 
which has the asymptotic form 

~f~ e i p ( k , * k , c o s e ) p - a + ~ ( p - ' ) ,  p 1. (2.29) 

Thus, to leading order, O(p-i), the inhomogeneous second-order potential has the far- 
field behaviour 

+$ E$(o , z )  eip(kj*ktCOso)p-++ ~ ( p - 1 ) .  (2.30) 

Satisfying the Laplace equation to leading order, and the bottom boundary 
condition, E* has the form 

E$ (8, z )  = 0; (8) cosh {(k; + kZ; +_ 2k, k, cos 0); (z+ h)) .  (2.31) 

Finally, 0(8) can be obtained from the free-surface condition of $pf. Equations (2.27), 
(2.30) are direct generalizations of the results of Molin (1979), and in the special case 
of monochromatic waves, w, = w l ,  reduce identically to those of Molin (1979). These 
results can also be derived starting from the initial-value problem and considering 
the long-time limit (cf. Wang 1987). It is of interest to note that the depth 
attenuation factors in (2.31) are angular dependent and have a minimum when k, = 
k, and 8 = x for the sum-frequency problem, and when 8 = 0 for difference-frequency 
problem. 

3. A boundary-integral equation method for the sum- and difference- 
frequency second-order potentials 

We solve the first- and second-order boundary-value problems of $2 by a 
boundary-integral equation method using free-surface wave-source Green functions. 
Consider first the boundary-value problem (2.18) for the second-order diffraction 
potentials, $6. Introducing the sum- and difference-frequency linear wave-source 
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potentials, G', at frequencies w * ,  and applying Green's identity to $6 and G', we 
obtain a Fredholm integral equation of the second kind for $4 : 

The forcing terms B* and Q', on the right-hand side are given in terms of solutions 
of the first-order problem and assumed known. In deriving (3:1), use is made of the 
so-called 'weak ' radiation condition which states that the integral at  infinity (on 8,) 
vanishes. This can be shown using the method of stationary phase and the known far- 
field asymptotic behaviour of $6 ((2.27) et seq) and of G*. 

For computational expediency, we consider a body with a vertical axis of 
symmetry. In this case, (3.1) can be integrated with respect to I9 to obtain a sequence 
of one-dimensional integral equations for each angular Fourier mode. Specifically, we 
expand $6, &*, B* and G* in terms of Fourier cosine series : 

m 

[$;(P, e , z ) ,  &*@, I~),B*(P, 0,z)l = C [$Bn(P, 21, Qf(p),B$(p, z ) ]  cos d; (3.2a) 
n-0 

m 

G * ( p , O , z ; p ' , V , z ' )  = x nGd(p,z ;p ' ,z ' )cosn(e-V) ;  (3.2b) 

where E ,  = 1 for n = 0 and en = 2 for n 2 1. Substituting (3.2) into (3.1) and using 
orthogonality of the trigonometric functions, we obtain, after integration in 8, a 
sequence of one-dimensional integral equations in the (p,  2)-plane : 

n-0 ~ I C  

where the line integrals are along the traces aB,aF of S, and S, respectively. 
Rearranging the double products of Fourier series for (2.20), the nth mode sum- 
frequency free-surface forcing term Qi in (3.3) has the form 

(3.4b) 

In  the above equations, $L represents the mth Fourier mode of the total first-order 
potential of frequency w, and normalized by -igA,/w,, and the free-surface condition 
for $ has been exploited in deriving (3.4). The nth mode difference-frequency free- 
surface forcing, &;, can be obtained in a similar way using (3.2) and (2.21). 
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For the body forcing terms, the sum- and difference-frequency components must 
also be expressed in terms of circumferential modes. I n  the absence of rotational 
modes, the sum-frequency body-boundary forcing term (2.23) has the following 
expression : 

where the unit outward normal vector to  aB is given by n = (n,,,n,). Substituting 
6;) = [y) cos 8, ti1) = - ti1) sin 8, and setting EJ,? to be zero without loss of generality 
the Fourier components of (3.6) are obtained t o  be 

Corresponding results in the presence of rotational motions can be obtained in a 
similar way. 

The general-order ring sources in (3.3) are calculated from Fourier integrals of the 
three-dimensional Green function : 

Gi (p ,z ;p ’ , z ’ )  = Gf(p,z;p’,z’;cos(8-8’))cos(n(0-8’))d(8-8’). (3.9) 

Details of the evaluation of G;, G$/an and analyses of their asymptotic properties 
are given in KY-I. 

For the present second-order diffraction problem, the so-called Green’s theorem 
integral equation (3.1) is used in favour of a source distribution formulation (e.g. 
Loken 1986). This has a significant computational advantage in that an additional 
free-surface integral term (of the form Q*aG*/an) is avoided. For the first-order 
problem, however, the use of a source distribution method reduces the order of the 
spatial derivatives of the Green function by one in the evaluation of the requisite 
velocity and gradient of velocity terms, and is preferred. This is confirmed in 
numerical tests where the source method is found to  yield more accurate and robust 
calculations of the derivatives of the potential. Thus for the first-order problem, we 
write 

r 

r 

(3.10) 

where uBn = uDn + uRn are the general-order ring-source strengths for the first-order 
body disturbance potential. 

The numerical solution of the second-order diffraction problem given by the 
second-kind Fredholm integral solution (3.3) (as well as that resulting from (3.10) for 
the first-order problem) follow the standard procedure of discretizing aB into linear 
segments, assuming constant potential (or source strength) over each segment, and 
collocating at the midpoint of each segment to  obtain a system of linear algebraic 
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equations for the unknown segment potentials (or source strengths). The analytically 
and computationally difficult task in the solution of (3.3) is the evaluation of the 
right-hand-side terms, particularly the slowly convergent integral on the unbounded 
free surface. From the far-field behaviours of Q* and G*, it is evident that the free- 
surface integral in (3.1) diminishes only as p-i for p $ 1. Direct numerical quadrature 
in the interior after a simple truncation of this integral (e.g. Loken 1986) is 
computationally prohibitive and the solutions are unreliable, especially for sum- 
frequency problems. On the other hand, a moving average technique (e.g. Molin & 
Marion 1986) is ineffective for bichromatic waves because of non-uniform oscillations 
of the integrand. For monochromatic waves, an accurate and efficient evaluation of 
this free-surface integral was obtained in KY-I by an exact analytic integration in 
the entire local-wave-free domain. The convergence with increasing radius of the 
region requiring numerical quadrature is subsequently exponentially rapid, resulting 
in a very compact discretized domain. This method is generalized here to the 
bichromatic sum- and difference-frequency problems. 

Consider the integral 

(3.11) 

where a is the radius of the waterplane of the body. The free-surface forcing terms, 
Q f ,  are given in terms of quadratic products of first-order potentials and their 
derivatives, which may be obtained through (3.10) and its derivatives. In the present 
method, we evaluate integral (3.1 1) in two intervals, (a, b)  and (b ,  a), where the 
partition radius b is chosen so that the latter interval is entirely free of local or 
evanescent waves : 

I n  = f [  J ~ P P Q ~  G.f +TdppQ: b Q:],  (3.12) 

where ( A )  represents quantities containing propagating wave components only. In 
practice, the first integral is performed by direct numerical quadrature (say 
Romberg integration) while the second integral is evaluated analytically. The 
partition radius b is in general not sensitive to frequency but depends primarily on 
water depth h. Using the expression of John (1950) for the Green function, and Graf s 
addition theorem for Bessel functions, we obtain after some algebra the local-wave- 
free modal amplitudes : 

6.f = -47c2ic* coshk$(z+h) cosh k$(z’+h)J,(k$ p’)H,(kzf p), (3.13) 

where 
tanh2 k, h k 

+A tanh k, h tanh k, h-8, 
k5 

4 1  = 2 (3.16) 
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p i . 1  K, m = (ak + ah P m  + P K  a,) H i  H& + ahp, H i  Hk* +PK a; H i *  H k .  
(3.18) 

In the above, JL and H h  are respectively the Bessel and Hankel functions of the first 
kind of order m and argument k j p ,  and a prime denotes differentiation with respect 
to the argument. The coefficients a and p are given by 

(3.19) 

The function Li is the nth mode (generalized) Kochin function of frequency w5, which 
describes the far-field behaviour of the first-order disturbance potential in (3.10), and 
is given by 

U, = IaB dZ’p’a!(x’) 4 ( k 5 p ’ )  cosh k,(z’ + h) .  (3.20) 

The coefficient c in (3.19) is defined to be c = (v2 -  k2) / (k2h-v2h+v);  where v = 02/g. 
The constants c* in (3.13) are given by the same expression but with v and k replaced 
by vf and k$ respectively. From (3.13) and (3.15) it is evident that the local-wave- 
free integrand, pQ,d,, can be expressed as a sum of triple products of Hankel 
functions (and powers of p ) ,  and the far-field integral itself in terms of elementary 
integrals of the form 

a; = - 4x2ic1 cosh k, hL$, PK = $eK iK. 

(3.21) 

A method for the accurate and efficient evaluation of highly oscillatory and slowly 
convergent integrals, such as 11, using Chebyshev expansions of Hankel functions 
and generalized Fresnel integrals is developed in KY-I. This method is extended here 
for arbitrary frequency combinations. Note that in the asymptotic expansions for 
large arguments, the slow convergence of the Hankel function for small k, in (3.21) 
is offset by the corresponding favourable asymptotic behaviour of J,(k; p‘) (see 
(3.13)). 

In addition to the analytic integration of the local-wave-free propagating field, 
another significant saving in evaluating the outer-field free-surface integral is in the 
separation of the source and field variables by the use of Graf s addition theorem. As 
a result, we can simultaneously obtain all the terms for every collocation point on the 
body after calculating the relevant free-surface integral once. This results in a 
dramatic reduction in computational effort especially for large-scale problems. 

4. Sum- and difference-frequency quadratic transfer functions (QTF’s) 
After solving for the sum- and difference-frequency second-order potentials, the 

associated second-order forces and moments as well as local pressure, velocities and 
free-surface elevations can be obtained directly. Following $2, we expand the 
hydrodynamic pressure, P( t ) ,  and free-surface elevation, g(t ) ,  also in perturbation 
series in E .  The first- and second-order terms are given respectively by 
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In  the presence of bichromatic waves, the second-order terms in (4.1) and (4 .2)  can 
be written in the form 

2 2  

(P (2 ) ( t ) , [ (2 ) ( t ) )  = Re C C. [A1A,@1C1,711C1)e-io+'+A,A:@~,qa)e-i"-t], ( 4 . 3 ~ )  

where p$ and y$ are now defined as the sum- and difference-frequency quadratic 
transfer functions for the pressure and free-surface elevation respectively. The 
complete second-order pressure and elevation QTF's in general contain two separate 
contributions : (i) that due to quadratic products of first-order potentials, which we 
denote by pq and qq respectively; and (ii) that due to the second-order potential 
itself, which we denote by p ,  and 7,: 

(Ph a$) = @ q : Z ' ? I q : Z )  + (P;z,7l;z). (4.3b) 

1-1 1-1 

These components for the sum-frequency case are given by 

p i j z  = [-QoV$~l).V$I1)l/AjAz, pi j z  = poiw+$+/AIAz, (4.4) 

The difference-frequency expressions are similar and are not given here. 

obtained by direct integration over the instantaneous wetted body surface, S(t)  : 
Given the hydrodynamic pressure, the wave forces and moments on a body can be 

(W), W t ) )  = JJS(,, P(n, r x n )  ds. (4.6) 

Hereafter, we only give expressions for the forces ; the corresponding expressions for 
moments can be obtained in a similar way. Using Taylor's expansion for both the 
pressure and unit normal vector of the instantaneous position #( t )  in (4 .6)  with 
respect to the body surface at  rest (#& the integral over S(t)  can be transformed to 
a surface plus a waterline integral over the quiescent body position, S, (details can 
be found in, for example, Ogilvie 1983). Upon collecting the contributions at  each 
order, we can write the complete first- and second-order hydrodynamic forces as a 
sum of different components : 

(4.7) F" = FA) + 61) + F,1) + FA;, 

F2) = 1F<p"'+p+Fg+Fg (FZ) = I;<,"'+F,2)), (4.8) 

where subscripts I, D and R represent respectively contributions from the incident, 
diffraction and radiation potentials, and HS the hydrostatic restoring forces, For the 
second-order force (4.8), Fp2) represents the contribution from quadratic products of 
first-order quantities, and Fp2) that due to directly to the second-order potential. The 
first-order components are given by : 

(4 .9)  

FA; = -po gA,(~~"  + y f  C@ - @) k, (4.10) 

where A, is the waterplane area, k the unit vector in the z-direction, and x f  and y f  
the locations of the longitudinal and transverse centres of floatation. 
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The second-order force components are given by 

(4.1 1)  

(4.12) 

+keg/ t$)zNdZ+a(l)xF1) 

-PogA,{ail)(sfail’ +yfaC’)} k, (4.13) 
where N = n/(l  -n,”)i, and for wall-sided bodies at  the waterline, N = n. In 
the above, the first-order relative wave height, C;l), is given by Cil) = 

The first- and second-order motions follow from the equations of motions after 
collecting terms a t  the respective orders. For example, the translational modes in the 
absence of external forces are governed by 

WL 

61’ - (g’ + ya:? - zap) .  

(4.14) 
a 2  

O at2 
M - ( .P++(’)xr , )=F’) ,  

(4.15) 

where M,, is the mass of the body, rG the position vector of the centre of gravity, and 
F1) and F2) are given by (4.7) and (4.8). As pointed out earlier, the second-order 
radiation problem for @g) is identical to that of the first-order radiation potential 
except for the change in frequencies, and the added mass and hydrodynamic 
damping coefficients for the second-order motions can be obtained similarly. 

In the sequel, we focus on the second-order wave exciting forces which include all 
the nonlinear aspects. We define the second-order wave exciting forces as 

F,”? = Fy)+F;)+q) .  (4.16) 

In the presence of bichromatic waves, the second-order wave excitation (4.16) has 
the form 

2 2  

F g ( t )  = Re C I: [AfAlf;Ze-io+t+A f A* 1 f,l -e-iw-t I, (4.17) 

fa = f6l +f& (4.18) 

where f* are now the complete sum- and difference-frequency exciting force 
quadratic transfer functions (QTF’s). For fixed bodies, for example (the more general 
case of freely floating or moored bodies can be readily derived from (4.11) and (4.13)) 
these force QTF’s are given by 

1-1 1-1 
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(4.21) 

For later discussions, it is convenient to split fp into its constituent components and 
write fp  = fI +fB + f F ,  where fi represents the second-order Froude-Krylov term, and 
fB and f F  are contributions associated with the body and free-surface forcing terms, 
respectively. 

For vertically axisymmetric bodies, the &integration in (4.19)-(4.21) can be 
performed independently. For example, the horizontal component off& in (4.19) 
has, upon integrating with respect to 6, the form 

(4.22) 

If only integrated quantities such as second-order forces are of interest, an indirect 
method (Molin 1979; Lighthill 1979), which does not require the solution for $6 
explicitly, can be used as follows: 

where Y i  are first-order assisting radiation potentials for mode k at the 
sumldifference frequency w + ,  and satisfy the body boundary condition aYj!/an = 
nk. For later reference in $5,  we use the notation fBB for the body integral that 
contains only B* in (4.23), and f B I  for the remaining body integral associated with 
9;. 

In (4.23), the B* contain the second spatial derivatives of the first-order 
potential on the body, which are difficult to calculate with sufficient accuracy. To 
circumvent this problem, an alternative expression for fsfBBjl corresponding to (2.23) 
can be derived using Stokes theorem to obtain finally 

II~~n.~Y*(ri".V)V4:]ds 

Y* dl- [Vq5j1) x Sl')] -]jSR n. [VY* x (V#) x 4l))] dS (4.24) 
= s, 

where r are all the boundaries of 8,. 
For a uniform bottom-mounted vertical circular cylinder, the first-order diffraction 

and radiation potentials are available in closed forms. Using (4.23), semi-analytic 
expressions for the second-order forces and moments can also be derived. These are 
summarized in the Appendix. These expressions provide a useful benchmark for later 
second-order numerical results. 

The present QTF's for bichromatic waves can be used to obtain predictions for the 
general case of a body interacting with a continuous spectrum of incident waves. The 
essential steps are outlined in $6. 

I9 FLM 211 
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5. Numerical results and discussion 
The numerical procedure for solving the integral equation (3.3) follows essentially 

that in KY-I. The main steps are: (i) approximate the body contour, aB, by Np 
straight line segments ; (ii) assume constant values for the potential $gn over each 
segment ; (iii) collocate the equations at the centre of each segment to obtain a system 
of linear algebraic equations for the segment unknowns; and (iv) solve the linear 
system for the unknown segment values. The numerical errors are essentially 
governed by the number of panels, N,,, and the number of circumferential Fourier 
modes, N ,  used in the general-order ring-source formulation. 

As a first check of the present numerical method for bichromatic waves, we 
consider the special case of a single wave, w, = wl ,  and obtain identical results to the 
regular wave solutions of KY-I. We next check the convergence of the present 
second-order sum- and difference-frequency potential solutions with respect to the 
number of panels Np, Fourier modes N ,  and partition radius b, for the free-surface 
integral evaluation. For these tests, we consider the diffraction of unidirectional 
bichromatic incident waves by a uniform (bottom-seated) vertical circular cylinder 
of radius a and depth h = a. In this case, semi-analytic results for the integrated 
forces can be derived (see Appendix) which provide a comparison for the present 
calculations. We select two typical frequency pairs (v, a ,  v1 a)  = (1,2) and (1.4,1.6) 
respectively, which have the same mean (sum) frequency but frequency difference 
Ava = 1 and 0.2 respectively. 

Table 1 shows the convergence of the second-order potential horizontal force 
QTF’s, f&, with increasing number of panels, Np, on the body. To follow the more 
rapid variations near the free-surface (especially for the sum-frequency potential), 
aosine-spaced segments (with smaller lengths near the free surface) are used. In this 
example, the maximum relative error is less than 0.3 YO when Np is greater than 10. 
Owing to the smaller wavenumber associated with g5- compared to that of g5+, we 
obtain a faster convergence for fSl. In later numerical results, Np = 20 segments are 
used for both first- and second-order calculations. 

To show the convergence of the computed second-order aum- and difference- 
frequency potentials, $&, with increasing numbers, n < N ,  of circumferential Fourier 
modes, the modal amplitudes of the potentials at (p ,  z )  = (a, 0) are given in table 2. 
The convergence of q5+ with increasing number of modes is slower and less uniform 
than that of #-. This can be attributed to the slow convergence of Bessel functions 
with increasing orders for higher frequencies (arguments). This also indicates that 
there are greater variations in the circumferential direction of the sum-frequency 
wave run-up on the body as is seen later (see figures 6 and 7).  The convergence rate 
of g5- is faster for smaller frequency differences, while the convergence of g5+ appears 
insensitive to changing difference frequencies. In the following calculations, N = 9 for 
the first-order problem (which is sufficient) and N = 14 and 9 respectively are used for 
the second-order sum- and difference-frequency problems. 

The free-surface integral (3.12) is expensive to compute yet crucial to the overall 
accuracy. The method of $3 is used, and its convergence tested for varying partition 
radius, b. From John’s (1950) expression of the free-surface Green function, we see 
that the decay rate of local waves is not sensitive to wave frequencies but depends 
primarily on the ratio p / h .  Table 3 shows typical convergence of the sum- and 
difference-frequency second-order potential force QTF’s, f&, on a uniform vertical 
cylinder (a /h  = 1) with increasing b.  Interestingly, the effects of local waves appear 
more localized for the difference-frequency problem. This was also pointed out by 
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Difference frequency Sum frequency 

(v,a,v,a) (1 .o, 2.0) (1.4,1.6) (1 .o, 2.0) (1.4,l.g) 
Semi-analytic 1.936 0.435 2.656 2.875 

N, = 10 1.935 0.435 2.664 2.876 
20 1.936 0.435 2.661 2.876 
30 1.936 0.435 2.660 2.875 

TABLE 1. Magnitudes of the second-order horizontal force QTF, If&/pOgaA,AiI, on a uniform 
vertical cylinder @/a = 1) with increasing numbers of cosine-spaced segments, N,, on the body. (A 
partition radius ( b - a ) / h  = 3 is used for the free-surface integration.) 

Difference frequency Sum frequency 

(v,  a, v ia )  = (1 .o, 2.0) (1.4,1.6) (1 .o, 2.0) (1.4,1.6) 
n = O  

1 
2 
3 
4 
5 
6 
7 
8 
9 

10 
11 
12 
13 
14 

2.4178 
4.2202 
1.3129 
0.2763 
0.0361 
0.0169 
0.0016 
0.0010 
0.0001 * 

12.5268 
4.1827 
0.2759 
0.0118 
0.0036 
0.0039 
o.Ooo1 
o.Ooo1 * 

0.2368 
1.2925 
0.6589 
0.1915 
1.0461 
1.5603 
1.1920 
0.4556 
0.0969 
0.0168 
0.0023 
0.0002 * 

* 
* 

0.2015 
1.3914 
0.7688 
0.0446 
1.0093 
1.4606 
1.1262 
0.4683 
0.1027 
0.0177 
0.0026 
0.0003 * 

* 
* 

TABLE 2. Cpnvergence of the sum- and difference-frequency potential modal amplitudes lq5;/(gAj 
Ai/2a(w,wi)s))I on the waterline (p  = a and z = 0) ofa  uniform vertical cylinder ( h / a  = 1). (* indicate 
values less than 0.0001.) 

Kagemoto & Yue (1986) in the study of multiple-body interactions including 
evanescent waves. From table 3, it is seen that a partition radius of (b-a)  - 3h is 
sufficient for 3 significant decimals of accuracy, and this value is used in all later 
computations. The excellent accuracy with relatively small inner numerical 
integration domains again underscores the efficacy of the present free-surface 
integral method. 

Having demonstrated the convergence of the present numerical method through 
comparisons to semi-analytic solutions, we now present complete second-order QTF 
results for several typical geometries : a uniform (bottom-mounted) vertical circular 
cylinder of depth-to-radius ratio h/a = 1 and 4; a fixed hemisphere; and a freely 
floating hemisphere. One of the objectives is to compare the complete (in the context 
of second-order diffraction theory) QTF’s with a number of popular approximation 
methods for predicting sum- and difference-frequency wave excitations and 

19.2 
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Difference frequency Sum frequency 

@,a, yz a)  = ( 1  .o, 2.0) (1.4,1.6) (1.0,2.0) (1.4,1.6) 
Semi - analytic 1.936 0.435 2.656 2.875 

(b -a ) /h  = 2 1.936 0.435 2.668 2.861 
3 1.936 0.435 2.661 2.876 
4 1.936 0.435 2.659 2.877 

TABLE 3. Magnitudes of the second-order sum- and difference-frequency potential force QTF’s, 
(f&/pOgaAjA,(, on a uniform vertical circular cylinder (h/a = 1 ) .  The results for different partition 
radii b are compared to semi-analytic solutions (Appendix). (N, = 20 is used on the body.) 

responses. These approximations are typically based on heuristic arguments and 
neglect one or more of the second-order components. The validity and usefulness of 
the different methods, which depend on the frequency combinations, body geometry 
and water depths, have so far not been established (e.g. Ogilvie 1983) primarily 
because complete second-order results have not been readily available. In addition 
to force and moment QTF’s, the QTF’s of local quantities such as pressure and wave 
run-up are also presented, revealing a number of interesting behaviours. For ease of 
presentation, the following results are organized separately for the sum- and 
difference-frequency problems. 

5.1. The difference-frequency problem 
Existing approximations for this problem are usually based on the assumption that 
the incident irregular waves are narrow-banded so that difference-frequency wave 
excitations are slowly varying. One approach, due to Newman (1974), is to replace the 
total QTF by the mean drift force operator f&. Marthinsen (1983) suggested a 
similar approximation based upon a slowly varying wave envelope (Hilbert 
transform) idea wherein the mean drift force operator of the instantaneous local 
frequency is used instead. These methods greatly simplify the problem since the mean 
drift forces can be computed from the first-order potential only. As a result, they 
have been widely used in practical applications although the restrictions on narrow- 
bandedness and small gradients (with respect to frequency difference) of the QTF on 
the monochromatic diagonal have not been quantified. Improvements on these 
approximations typically include one or more of the missing second-order 
contributions, usually based on the fact that they can be fairly readily obtained. 
Examples include the incomplete QTF operators (f; +f;) of Standing & Dacunha 
(1982) ; and f- x f; + f; +f& used by Pinkster (1980). All such approximations 
exclude the more difficult contributions due to second-order forcing on the body by 
first-order motions, fGB, and that due to the free-surface inhomogeneous terms, f;. 

In table 4, the complete second-order difference-frequency horizontal force QTF 
together with its constituent components are given for a bottom-mounted uniform 
vertical cylinder (h /a  = 1 and 4) for different incident frequency combinations. The 
qualitative trends are similar for the two depths although the force magnitudes are 
smaller for the deeper cylinder. For a fixed sum frequency and increasing frequency 
difference, Ava, the contributions from the second-order potential, f;, fg, and f;, 
increase almost linearly starting from zero on the diagonal ; while the linear quadratic 
term f; remains more or less the same. As a result, f ;  dominates the other 
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0.603 
0 
0 
0 
0.603 

v,a = 

0.772 0.753 0.729 
0 0.229 0.437 
0 0.231 0.445 
0 0.036 0.099 
0.772 0.810 0.925 

vz a 

1 .o 

1.2 

1.4 

1.6 

1.8 

2 .o 

0.594 0.600 
0.164 0 
0.164 0 
0.035 0 
0.615 0.600 

0.666 
0.647 
0.168 
0.167 
0.034 
0.689 
0.612 
0.337 
0.331 
0.088 
0.763 
0.578 
0.504 
0.481 
0.150 
0.856 
0.552 

0.208 
0.943 
0.534 
0.809 
0.676 
0.243 
1.009 

0.748 0.735 
0 0.211 
0 0.213 
0 0.037 
0.748 0.777 

v,a = 1.0 

0.583 0.602 0.615 
0.329 0.163 0 
0.322 0.163 0 
0.096 0.037 0 
0.678 0.619 0.615 

1 .o 
0.918 
0 
0 
0 
0.918 
0.636 
0 
0 
0 
0.636 
0.612 
0.166 
0.165 
0.034 
0.640 
0.588 
0.332 
0.325 
0.093 
0.701 
0.567 
0.497 
0.471 
0.158 
0.788 
0.547 
0.653 
0.586 
0.215 
0.877 
1.2 

0.732 
0 
0 
0 
0.732 

2.0 
0.680 
1.131 
1.063 
0.273 
1.575 
0.685 
0.864 
0.854 
0.226 
1.294 
0.698 
0.626 
0.632 
0.166 
1.054 
0.712 
0.406 
0.41 1 
0.101 
0.867 
0.717 
0.198 
0.200 
0.038 
0.749 
0.711 
0 
0 
0 
0.711 

TABLE 4. Magnitudes of the components of the second-order difference-frequency horizontal force 
QTF, IfJpogaA,A:I, on a uniform vertical cylinder. The upper right triangular matrix is for 
hla = 1, and lower half for h/a = 4. Each element satisfies the symmetry relation f,; =f;l*. 
Computed values are for: first row, If&l ; second row, I&J ; third row, Jf&I ; fourth row, If&l ; and 
fifth row, the complete QTF IfJ. 

contributions near the diagonal, while for larger frequency differences, the 
contributions due to the second-order incident waves, f; and f;, dominate. The 
computationally difficult free-surface contribution term, f;, remains small overall. 

The relatively rapid growth off; and j g  with increasing Ava indicates that the 
validity of Newman’s (1974) or Marthinsen’s (1983) approximations is quite sensitive 
to the narrow-bandedness of the input spectrum. On the other hand, Pinkster’s 
(1980) approximation (or QIB approximationt) which excludes only f; is expected 
to give acceptable results for a broader range of frequency combinations without 

t Pinkster (1980) used only an approximated for the body-forcing contribution even for 
freely floating bodies. In  this sense, we call the more general approximation that also includes fiB 
in the body-forcing contribution the ‘QIB ’ approximation method. 
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0.173 

0.173 

v,a = 1 .o 1.2 1.4 1.6 1.8 2.0 
0.003 0.063 0.115 0.155 0.185 0.207 
0 0.148 0.272 0.377 0.464 0.533 
0 0.018 0.048 0.080 0.110 0.130 
0.003 0.345 0.624 0.848 1.016 1.126 

” I  a 
1 .o 

1.2 

1.4 

1.6 

1.8 

2 .o 

0.173 
0 
0 
0.173 

0.044 0.080 0.120 0.154 0.182 
0 0.127 0.238 0.334 0.415 
0 0.017 0.047 0.080 0.108 
0.044 0.303 0.548 0.750 0.908 

0.203 
0.318 
0.055 
0.729 
0.257 
0.559 
0.130 
1.232 
0.299 
0.702 
0.197 
1.539 
0.321 
0.766 
0.249 
1.682 
0.325 
0.782 
0.268 
1.717 

1 
i 
1 

0.196 0.178 
0.315 0 
0.055 0 
0.708 0.178 

0.076 0.099 0.128 0.157 
0 0.114 0.216 0.306 
.O 0.018 0.048 0.080 
0.076 0.281 0.500 0.687 

V j U  = 1.0 1.2 1.4 1.6 1.8 2.0 
TABLE 5. Magnitudes of the components of the second-order difference-frequency pitch moment 
QTF, w;,/p,gu*A,A:I, on a uniform vertical cylinder. The upper right triangular matrix is for 
h/a = 1, and lower half for h/u = 4. Each element satisfies the symmetry relation M i  =M;*. 
Computed values are for: first row, w;,J ; second row, w;,J ; third row, W;,J ; and fourth row, the 
complete QTF w;l. 

0.235 0.194 0.181 
0.552 0.312 0 
0.133 0.056 0 
1.184 0.690 0.181 

considerable increase of computation time. This was also observed by Eatock Taylor 
et al. (1988). 

Table 5 shows the difference-frequency pitch moment (with respect to the 
waterplane centre) QTF’s on a uniform vertical cylinder, h/a = 1 and 4. The 
behaviour of the body-surface forcing contribution MG here is very similar to M; (see 
also table 4) and is not given separately. Unlike the horizontal force, the moment 
QTF’s are greater for the deeper cylinder, and the components associated with &, 
M; and M i ,  dominate Hi in most of the cases. This can be attributed to the slow 
depth attenuation of 4; for small Ava (see (2.7)), which results in a lower centre of 
pressure and a larger moment arm. To show this feature more clearly, we present in 
figure 1 the second-order potential pressure QTF’s, p i ,  as compared to the first-order 
quadratic pressure QTF’s, p i ,  on the side of the h/a = 4 cylinder for two incident 
frequency combinations, ( v ja ,  v, a )  = (I, 2) and (1.4, 1.6). The behaviour of the 
second-order potential pressure, pi, is dominated by 4; and its diffracted free wave, 
with a depth attenuation rate characterized by the wavenumber kj - k, or k;. Thus, 
for smaller Am, pp becomes comparably small in magnitude but penetrates deeper 
on all sides of the cylinder. In this case, 4; behaves like long waves in shallow water, 

0.096 0.111 0.134 
0 0.105 0.201 
0 0.018 0.049 
0.096 0.267 0.469 

0.264 0.218 0.188 0.176 
0.691 0.546 0.310 0 
0.207 0.138 0.058 0 
1.465 1.144 0.673 0.176 

0.106 0.117 
0 0.099 
0 0.018 
0.106 0.259 

0.282 0.240 0.205 0.178 0.165 
0.753 0.683 0.542 0.309 0 
0.258 0.21 1 0.143 o.of30 0 
1.597 1.412 1.113 0.661 0.165 

0.112 
0 
0 
0.112 
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0.4 I I I I I I 

0.3 

0 0.2 0.4 0.6 0.8 1 .o 
- z / h  

1.2 

0,s 

I pi a I 0.6 
Po gA, A: 

0.3 

0 0.2 0.4 0.6 0.8 1 .o 
- z / h  

FIQURE 1. The second-order difference-frequency pressure QTF on the side of a uniform vertical 
cylinder, radius a, depth h = 4u. The curves are for: IpJ for v,a,v,u = 1,2 (-*--); 1.4,1.6 
(---); and Ipp,J for v,a, vza = 1,2 (----); 1.4,1.6 (-). (a)  lee side (0 = 0 ) ;  and ( b )  weather 
side (0 = n). 

and the associated pressures are almost uniform to the bottom. These deeply 
penetrating local pressures contribute significantly to the pitch moment through 
increased moment arms. In conrast, the quadratic pressure p i  attenuates rapidly 
according to the wavenumber kj + k,, and does not contribute appreciably to the 
pitch moment. It is interesting to note that the magnitudes of M; are also 
appreciably increased near the diagonal owing to the slow depth attenuation of the 
locked waves on the lee side as can be expected from (2.31). 
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FIGURE 2. The second-order difference-frequency potential pressure QTF, lpijt1, on a uniform 
vertical cylinder (h/a = l ) ,  for (vja,v,a) = (1,2), and at angular positions: 0 = 0 (------), in 
(-.-), +n (---), in (----), and n (-). 

In view of these effects associated with the behaviour of the second-order incident 
and free waves, the validity of Newman’s (1974), Marthinsen’s (1983), and Standing 
& Dacunha’s (1982) approximations may be limited, especially for pitch-roll 
excitations of deep-draught bodies. These results indicate that the components 
associated with & are important for the prediction of slowly varying pitch moments 
on deep-draught platforms, particularly when the centre of rotation is located close 
to the free surface. 

To further illuminate the local behaviour of the second-order difference-frequency 
potential, we plot in figure 2 its associated pressure QTF, p i ,  as a function of depth 
at five angular positions on the vertical cylinder, h/a = 1 ,  and incident frequencies 
(v,a, vra)  = (1,2).  Because of the dominant contribution from q5;, the variation of pp 
along the circumference is quite small in contrast to the sum-frequency case (see 
figure 5 ) .  The effect of the angular-dependent free-surface forcing term is not 
appreciable in this figure. In  figure 3, we show the run-up QTF, r;, associated with 
the second-order potential on the h/a = 1 cylinder. For comparison, the run-up QTF, 
7;’ due to quadratic products of first-order potentials is also plotted. The angular 
variation of 7; is much milder than that of 7g, as can be expected from the behaviour 
of $:. I n  particular, for small Ava, 7; is almost a constant on the cylinder. 

We next consider the difference-frequency wave excitations on alternatively a 
fixed and a freely floating hemisphere of radius a in depth h = 3a. In  this case, the 
first-order solutions for wave exciting forces, added mass, hydrodynamic damping, 
and motions are first checked and confirmed against the results obtained, for 
example, by Hulme (1982) and Pinkster (1980). Table 6 shows the complete 
difference-frequency horizontal and vertical force QTF’s as well as their constituent 
components for a fixed hemisphere. Comparing with the QTF’s for the cylinder (table 
4), here f; (especially for the horizontal force) is the most important contribution in 
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FIGURE 3. The second-order difference-frequency run-up QTF’s, T; ,~  and T;,~, on a uniform vertical 
cylinder @/a = 1).  The curves are:  IT;,^^ for v,a, v la  = 1,2 (-.-); 1.4,1.6 (---); and  IT&^^^ for 
V , U ,  = 1,2 (----); 1.4,1.6 (-). 

almost all frequency combinations. The components f; and fGI also contribute 
appreciably, while the free-surface component remains small. The second-order 
potential force QTF, f;, has in general milder/faster variations compared to f; with 
increasing frequency sums/differences. The components of the vertical force, f; and 
(f; + fi), are in general in phase so that the complete QTF f; is always larger than the 
individual components. The opposite trend is seen for the horizontal forces. 
Consequently, the gradient (with respect to Av) of the vertical force QTF near the 
diagonal is steeper than that of the horizontal force QTF. The mean vertical drift 
force, which is given on the diagonal, is negative and is comparable in magnitude with 
the horizontal mean drift force. 

Similar results for the freely floating hemisphere are given in table 7. As pointed 
out earlier, we separate the contributions due to the body forcing into two parts, fGI 
and fiB, where fiI represents the diffraction effect of &, and fiB the contribution 
associated with first-order motions, in this case (and for table 12) calculated using the 
more robust (4.24). The result for the component, f; +f&, is identical to that in table 
6 and not repeated here. In general, the trends for the relative magnitudes of the 
individual contributions are similar to that of table 6. As expected, the effect of first- 
order motions in f; and f; decreases with increasing sum frequencies. The 
contribution of the body forcing due to first-order motions, fgB, as well as the free- 
surface contribution, f;, are found to be less important compared to the other terms, 
especially near the diagonal. However, because of the possible phase cancellations 
among the contributions, neglecting f; or fiB for certain cases may not be acceptable 
particularly for large Ava. For example, for (v,a, v l a )  = (1,2) in table 7, the 
component from the free-surface integral is 70% of the total horizontal force QTF. 
As will be shown later (see tables 11 and 12), this first-order motion effect is much 
more significant in the sum-frequency problem. The mean drift forces for a freely 
floating (or fixed) hemisphere given by the diagonal terms in table 7 (or table 6) are 
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0.156 
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0.513 
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0.525 
0.238 
0.069 
0.428 
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0.135 
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0.012 
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TABLE 6. Magnitudes of the components of the second-order difference-frequency force QTF, 
Ifr;!p,,gaA,A:l, on a fixed hemisphere (h/u = 3). The upper right triangular matrix is for the 
horizontal force, and the lower half the vertical force. Each element satisfies the symmetry relation, 
& = &*. Computed values are for: first row, ]&I ; second row, +fJ ; third row, lf;,J ; and 
fourth row, the complete QTF I&[. 

in good agreement with the results of Pinkster (1980) and Molin (1983). Note that the 
mean vertical force in table 7 changes sign in the vicinity of the heave reasonance 
frequency, va - 1. 

We finally present results for the second-order heave and surge motions of the 
freely floating hemisphere at the difference frequency of the incoming bichromatic 
waves. These can be obtained from (4.15) in terms of the exciting force QTF's, f;. It 
is interesting to note that the second-order heave and surge motions are mutually 
independent but are both coupled to the first-order surge and heave motions through 
the body boundary forcing term, B. For any pair of bichromatic waves whose 
frequency sum or difference coincide with the natural frequency of a particular mode, 
second-order resonance can occur. This is seen in table 8 for the difference-frequency 
response QTF's where a heave resonance is observed for the wave pair, (uj  a, uI a) = 
(1,4). Because of the large hydrodynamic damping near the heave resonance 
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V, = 0.8 1 .o 1.2 1.4 1.6 1.8 2.0 
TABLE 7. Magnitudes of the components of the second-order difference-frequency force QTF, 
If;/poguA,AfI, on a freely floating hemisphere (h/a = 3). The upper right triangular matrix is for 
the horizontal force, and the lower half the vertical force. Each element satisfies the sym- 
metry relation, f;;  = f;,*. Computed values are for: first row, I&J; second row, If;BjlI ; third row, 
I f J ;  and fourth row, the complete QTF I f J .  

vja = 0.6 1 .o 1.4 
v1a 0.161 (0.175) 0.378 (0.188) 0.366 (0.133) 

3.6 0.207 (0.049) 0.455 (0.067) 0.240 (0.076) 
4.0 0.150 (0.230) 0.373 (0.170) 0.338 (0.103) 

0.112 (0.051) 0.684 (0.050) 0.298 (0.044) 
4.4 0.144 (0.205) 0.333 (0.219) 0.300 (0.029) 

0.071 (0.041) 0.495 (0.056) 0.390 (0.010) 
TABLE 8. Second-order difference-frequency heave and surge response QTF’s, I& u/A!Afl, for a 
freely-floating hemisphere (h/a = 3). The results are for: first row, the complete exciting force 
QTF ; and second row, the complete response QTF. The surge exciting force and response QTF’s 
are given in parentheses. 
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4.162 4.454 4.843 5.097 
2.182 2.505 2.935 3.277 
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3.852 3.961 4.159 4.695 
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I 
I 

I 

I 
V,U = 1.0 1.2 1.4 1.6 1.8 2.0 

TABLE 9. Magnitudes of the components of the second-order sum-frequency horizontal force QTF, 
If;/pogaA,A,I, on a uniform vertical cylinder. The upper right triangular matrix is for h/a  = 1, and 
lower half for h/a = 4. Each element satisfies the symmetry relationf; = f;’,. Computed values are 
for: first row, lf&l;  second row, I&J; and third row total QTF, If$\ = If,+,,,+f&l. 

frequency at  va - 1, the resonance amplitude is small and gives only about 1 % 
correction to the first-order motion amplitude at that frequency for wave steepnesses 
of the order (IcA)r,l - 0.1. In this frequency range, the surge response QTF is 
typically only about 10% of that in heave, although the horizontal and vertical force 
QTF’s are of the same order of magnitude. 

5.2. The sum-frequency problem 
Unlike the difference-frequency problem, where the zero difference-frequency (mean) 
force can be obtained directly from first-order potentials only, the sum-frequency 
force QTF’s cannot be likewise estimated even in the case of a single regular wave. 
For this reason, relatively few useful studies have been made for the sum-frequency 
problem. One attempt is that of Herfjord & Nielsen (1986) who applied the linear 
quadratic operator, fl, in place of the complete QTF, f;. This was also used by 
Petrauskas & Liu (1987) in estimating the loads of the tendons of a tension-leg 
platform. This was found to underestimate the experimental measurements by aa 
much as a factor of 3 or 4. Another idea is that of De Boom et al. (1983) who included 
also the terms associated with the second-order incident potential (f: +f: + f&), 
somewhat analogous to Pinkster’s (1980) approach for the difference-frequency 
problem. Again, the more difficult terms such as f& and fg are ignored in these 
approximations. Unlike the difference-frequency case, there is little basis for 
justifying such approximations regardless of whether the incident waves are narrow- 
banded or not. 

In table 9, we present the sum-frequency horizontal force QTF’s on the bottom- 
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TABLE 10. Magnitudes of the components of the second-order sum-frequency pitch moment QTF, 
wf,/p,gaaA,AIl, on a uniform vertical cylinder. The upper right triangular matrix is for h/a = 1, 
and lower half for h/a = 4. Each element satisfies the symmetry relation Mf; = M&.+ Computed 
values are for: first row, &,J; second row, w&J; and third row total QTF, &,I+Mp,II. 

mounted vertical cylinder of depths h/a = 1 and 4 for different incident frequency 
combinations. Unlike the difference-frequency problem, the components associated 
with the second-order incident wave, f: and f&, are almost negligible in the 
frequency range considered and are hence omitted. (However, we remark that these 
contributions may be important for small kh, as can be seen from (2.6).) In this case, 
most of the second-order potential contribution fi comes from the free-surface 
integral term f;. The force, fP+, is in general greater than f; and becomes more 
important for the deeper cylinder. For a fixed frequency difference and increasing 
sum frequencies, fp' oscillates in magnitude but increases rapidly, which accounts for 
the relative importance of the sum-frequency potential contribution for higher sum 
frequencies. On the other hand, for fixed sum frequency and increasing frequency 
differences, fp' decreases rapidly (especially for the h/a = 4 case). These features are 
mainly due to the behaviour of the second-order potential pressure suggested by the 
far-field asymptotic form (2.31), as will be explained later. Note that fp' and fp' are 
generally out of phase, so that the total force QTF's are typically smaller. 

Similar results for the sum-frequency pitch moment QTF's with respect to the 
waterplane centre are given in table 10. In this case, Mi is generally much greater 
than especially for the deeper cylinder. This can be attributed to the deep 
penetration of the sum-frequency second-order diffraction potential, (P;, or more 
precisely the particular solution, (Pi. To show this, we plot in figure 4 the sum- 
frequency pressure distributions on the lee (6 = 0) and weather (0 = n) sides of the 
vertical cylinder as a function of depth for two different incident frequency 
combinations. We observe the dominant and slower attenuating second-order 
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FIGURE 4. The second-order sum-frequency pressure QTF’s on a uniform vertical cylinder @/a = 
4).Thecurvesarefor: (p~,, lforvja,v,a=1,2 (-.--); 1.4 ,1 .6( - - - ) ;and~p~, , ( forv ,u ,v ,a=l ,  
2 (----); 1.4,1.6 (-). (a )  Lee side (0 = 0); and (b)  weather side (0 = II). 

potential pressure especially on the weather side (see (2.31)). This nonlinear potential 
pressure p: appears to decrease only algebraically with depth in contrast to the 
expected exponential decay of the quadratic pressures p i  with wavenumber (k ,  + kJ. 
In (2.311, the far-field decay rate of #; with depth is angular dependent and given by 
the wavenumber k, = (k,2 + kf + 2k, k, cos O);, which has a minimum/maximum for 
k, = k, and 6 = x / O  and increases with increasing kj - / + k,. One consequence is the 
behaviour of f;S in table 10, which has a maximum on the diagonal and decreases 
faster than f: with increasing Ava. Another effect is the increased moment arm 
associated with p i  which results in a significant contribution to the pitch moment 
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FIGURE 5. The sum-frequency second-order potential pressure QTF, I&l, on a uniform vertical 
cylinder (h/a = i) ,  for (v,a, via) = (1 ,2) ,  and a t  angular positions: 8 = 0 (------), ax (---), in 
(---), in (----), and x f-). 

QTF especially for deep draught bodies. It is noteworthy that when the free-surface 
component f$ is included in estimating the sum-frequency wave excitations on a 
tension-leg platform (Kim & Yue 1988), loadings several times greater than those 
obtained using only fP+, 2; are obtained. These predictions using the complete QTF 
are substantially supported by the large-scale tension-leg-platform experiments of 
Petrauskas & Liu (1987). 

Figure 5 plots the second-order sum-frequency potential pressure QTF’s, p i ,  for 
the vertical cylinder of h/a = 1 as a function of depth at  different angular positions 
for (v,a, vz a )  = (1,2). In contrast to the difference-frequency problem (figure 2), 
variations in p;  for different 8 are large owing to the dominant contribution from the 
angular-dependent free-surface pressures. As pointed out earlier, the decay rate at  
the waveward side is in general much slower than that of the leeward side. It is 
interesting that the minimum pp’ may not occur at the bottom of the cylinder, for 
example, on the leeward (0 = 0) side. 

In figure 6, we present the second-order potential run-up QTF, ?I;, and the 
quadratic contribution, q t ,  on the h/a = 1 vertical cylinder for two different incident 
frequency combinations: (v,a, v za )  = (1,2) and (1.4,1.6). Unlike the difference- 
frequency problem (figure 3), both and $ are not sensitive to changes in Am. 
While the magnitude of 7; generally increases from the lee (0 = 0) to weather side 
(8 = n), that of 7: oscillates in 8, reaching peaks of comparable values 8 = 0, $t and x .  

We now turn to the hemisphere under sum-frequency excitation. Table 11 gives 
the horizontal and vertical sum-frequency force QTF’s on a fixed hemisphere (h /a  = 
3). Again, the contributions associated with q5:, f: and f&, are negligible in the 
frequency range shown and are omitted. The horizontal force QTF components, fg‘ 
and fP+, are comparable in magnitude, while in the vertical direction, fJ,l is dominant 
over f;l. This is due to the appreciable second-order potential pressures on the 



586 M.-H.  Kim and D. K. P. Yue 

4.0 

3 .O 

l*i 2.0 

1 .O 

0 

I I I I 

0.2 0.4 0.6 0.8 1 .o 
01 n 

FIGURE 6. The second-order sum-frequency run-up QTF's, ?I:,, and T&,, on a uniform vertical 
cylinder (h/a = 1 ) .  The curves are for: ITP+,~~ for v,a, v la  = 1,2 (---); 1.4,1.6 (---); and &1 for 
v,u,u,u,= 1,2 (----); 1.4,1.6 (+--). 

bottom of the sphere. In both horizontal and vertical directions, fg' and fp' are 
generally out of phase, resulting in a smaller total QTF. 

In figure 7,  we plot the sum- and difference-frequency potential run-up QTF's, T:, 
around a fixed sphere for two frequency combinations. Like the vertical cylinder 
case, q: is much greater than 7;. The general trends of 7; and 7: are quite similar to 
those in figures 3 and 6, with ?,I: having a more dominant peak on the weather side. 

We finally give QTF results for the freely floating hemisphere and investigate the 
effect of first-order motions on the sum-frequency excitation (table 12). In contrast 
to the difference-frequency case (table 7),  the body-surface forcing term due to first- 
order motions fiB contributes significantly in this case especially for vertical forces. 
Comparing to table 11, the increase of the quadratic term fg' is quite noticeable 
especially near the heave natural frequency. This increase of fg' and f& near the 
heave natural frequency can barely be seen in the difference-frequency problem. In 
table 12, the three major contributions, f4+, fGB, and fp' (or f;), are in general out of 
phase and hence the magnitude of the total QTF is much less than the sum of the 
individual components. With increasing sum frequency, the relative importance of fp' 
increases over the other contributions, while f& and fg' continue to decrease. As 
a result, fg' and f& are the most important components in the low sum-fre- 
quency region, (vj + vz) a < - 2.8, whereas f$ dominates the other contributions for 
(v,+v,)u > - 2.8. 

6. Conclusion 
The complete second-order sum- and difference-frequency diffraction problems 

€or fixed or freely floating axisymmetric bodies in the presence of bichromatic 
incident waves are solved by the ring-source integral equation method. An important 
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0.948 
0.191 
1.055 
0.865 
0.151 
0.968 
0.819 
0.126 
0.812 
0.687 
0.116 
0.789 
0.673 
1.2 

1.2 
1.183 
1.025 
0.751 
1.268 
1.249 
0.704 
1.333 
1.426 
0.663 
0.147 
0.937 
0.790 
0.1 14 
0.859 
0.745 
0.100 
0.836 
0.736 
0.102 
0.859 
0.758 
1.4 

1.4 
1.188 
1.183 
0.749 
1.317 
1.412 
0.692 
1.409 
1.604 
0.642 
1.488 
1.774 
0.614 
0.094 
0.874 
0.781 
0.096 
0.971 
0.877 
0.107 
1.055 
0.951 
1.6 

I 

1.6 
1.245 
1.350 
0.741 
1.399 
1.594 
0.681 
1.496 
1.777 
0.628 
1.560 
1.918 
0.600 
1.604 
2.024 
0.592 
0.108 
1.187 
1.083 
0.122 
1.342 
1.225 
1.8 

1.8 2.0 
1.324 1.385 
1.506 1.605 
0.717 0.676 
1.485 1.538 
1.747 1.830 
0.655 0.610 
1.569 1.600 
1.905 1.954 
0.603 0.560 
1.607 1.607 
2.006 2.015 
0.579 0.541 
1.617 1.586 
2.079 1.995 
0.585 0.518 
1.598 1.545 
2.057 2.032 
0.563 0.570 

1.484 
2.017 

1.444 I 0.606 

0.133 
1.572 

2.0 
TABLE 11. Magnitudes of the components of the second-order sum-frequency force QTF, 
Ifi/poguA,A,I, on a fixed hemisphere (h/a = 3). The upper right triangular matrix is for the 
horizontal force, and the lower half the vertical force. Each element satisfies the symmetry relation, 
f$ =f:. Computed values are for: first row, I f & l ;  second row, IfAJ; and third row the complete 
QTF, If& 

0 0.2 0.4 0.6 0.8 1 .o 

FIGURE 7. The sum- and difference-frequency second-order potential run-up QTF's, &, on a fixed 
hemisphere on water depth h = 3a. The curves are for: ~T&J for v ja ,  ula = 1,2 (-.-); 1.4,1.6 
(---). , and Iyfl for v,a,v,a = 1,2 (----); 1.4,1.6 (-). 
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0.284 
0.288 
1.977 
1.918 

v,a = 

1.665 
0.291 
2.178 
0.829 

VI a 
0.8 

1 .o 

1.2 

1.4 

1.6 

1.8 

2.0 

1.485 
1.641 
0.67 1 
0.131 
2.331 
2.751 

0.416 
1.885 
2.461 
0.648 
0.628 
1.107 
1.624 
0.327 
0.566 
0.712 
1.177 
0.169 
0.525 
0.501 
0.924 
0.104 
0.503 
0.375 
0.763 
0.088 
0.479 

{ 0.894 

Y,  = 0.8 

0.8 
1.244 
0.681 
0.535 
0.541 
3.467 
4.427 
0.984 
1.461 
2.702 
3.826 
0.778 
1.877 
1.539 
2.459 
0.565 
1.517 
0.962 
1.747 
0.517 
1.280 
0.656 
1.356 
0.522 
1.159 
0.473 
1.103 
0.493 
1.051 
1 .o 

1 .o 
1.878 
0.861 
0.967 
0.756 
2.646 
1.198 
1.573 
1.041 
2.085 
3.219 
1.204 
2.338 
1.200 
2.034 
1.134 
1.866 
0.771 
1.483 
1.1b9 
1.632 
0.553 
1.102 
1.022 
1.375 
0.431 
0.901 
0.994 
1.278 
1.2 

1 

1.2 
1.697 
0.617 
0.992 
0.673 
2.551 
0.999 
1.767 
0.977 
2.871 
1.031 
2.336 
1.067 
0.720 
1.254 
1.142 
1.516 
0.496 
0.897 
1.180 
1.372 
0.393 
0.697 
1.204 
1.305 
0.340 
0.575 
1.191 
1.254 
1.4 

1.4 
1.293 
0.379 
0.857 
0.486 
2.107 
0.762 
1.568 
0.812 
2.548 
0.829 
2.282 
0.948 
2.302 
0.653 
2.293 
0.857 
0.378 
0.638 
1.331 
1.383 
0.330 
0.502 
1.456 
1.451 
0.306 
0.419 
1.473 
1.450 
1.6 

1.6 
1.149 
0.326 
0.779 
0.407 
1.916 
0.682 
1.459 
0.733 
2.373 
0.727 
2.233 
0.879 
2.154 
0.555 
2.266 
0.806 
2.010 
0.458 
2.249 
0.778 
0.307 
0.399 
1.696 
1.653 
0.295 
0.338 
1.786 
1.734 
1.8 

1.8 
1.091 
0.314 
0.721 
0.358 
1.797 
0.648 
1.357 
0.678 
2.263 
0.675 
2.169 
0.822 
2.061 
0.504 
2.216 
0.760 
1.916 
0.409 
2.215 
0.759 
1 .822 
0.348 
2.169 
0.752 

2.0 
1.040 
0.305 
0.649 
0.328 
1.677 
0.623 
1.226 
0.632 
2.151 
0.642 
2.060 
0.761 
1.965 
0.474 
2.117 
0.705 
1.823 
0.368 
2.079 
0.694 
1.739 
0.322 
2.141 
0.766 

TABLE 12. Magnitudes of the components of the sum-frequency force QTF, Ifi:/poguAjAI(, for a 
freely floating hemisphere (h /a  = 3). The upper right triangular matrix is for the horizontal force, 
and the lower the vertical force. Each element satisfies the symmetry relation, .f: = f:. Computed 
values are for: first row, If&[ ; second row, If&J ; third row", 
total QTF, IjJ. 

+f&I ; and Gi r th  row the 

part of the solution is the efficient and accurate evaluation of the boundary forcing 
terms, particularly the integral on the entire free surface. An approach which treats 
the local-wave-ftee outer region analytically is developed and shown to be efficacious 
for both the sum- and difference-frequency problems. Although the second-order 
sum- and difference-frequency potentials are solved explicitly, the present method is 
comparable in computational effort (see $3) to the indirect approach which utilizes 
fictitious radiation potentials to obtain integrated quantities only. On the other 
hand, the availability of the second-order potential allows us to investigate and 
uncover many important local second-order phenomena in § 5. 

For illustration, extensive computations are performed for the sum- and difference- 
frequency diffraction by a bottom-mounted uniform vertical cylinder, and a fixed 
and a freely floating hemisphere. Systematic convergence tests are performed, and 
for the vertical cylinder, the results for the forces are checked against semi- 
analytic formulae developed in the Appendix. 
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From our numerical examples, several important features of the sum- and 
difference-frequency solutions can be observed : 

Difference-frequency problem. Among the components of the total second-order 
difference-frequency force, the quadratic term, f;, and second-order incident wave 
contributions, f ;  and f & ,  are found to be the most important. The second-order 
incident potential, $;, attenuates slowly with depth especially for small frequency 
differences. As a result, f; and fGI are particularly important when the draught of the 
body is large or when major portions of the body are deeply submerged. In  this case, 
widely used approximation such as those of Newman (1974), Marthinsen (1983), and 
Standing & Dacunha (1982), may substantially underestimate the slowly varying 
forces and moments. On the other hand, Pinkster's (1980) or QIB approximations are 
found to be useful for a broad range of incident frequency combinations. The second- 
order potential pressures and run-up are primarily associated with the second-order 
incident wave and are relatively constant around the body, especially when the two 
primary incident frequencies are close. 

Sum-frequency problem. In  contrast to the difference-frequency problem, the 
second-order diffraction potential &,, or more precisely the locked wave potential 4; 
associated with the free-surface forcing, plays a dominant role. As a result, existing 
approximations which all exclude this contribution are inadequate and may 
substantially underestimate the sum-frequency wave loads. The contributions 
associated with $: in this case are negligible except for the long wave (or shallow 
water) regime. Unlike the difference-frequency problem, the body-boundary forcing 
contribution from first-order motions, f&, has an important effect on the sum- 
frequency forces on an oscillating body. As in the monochromatic case, the second- 
order diffraction potential & attenuates slowly with depth on the waveward side. 
Interestingly, the penetration is deeper for smaller frequency differences of the 
incident waves. As a result, the pitch moments on a deep-draught body can be 
greatly amplified owing to p i ,  particularly when the centre of rotation is close to the 
free surface. The sum-frequency second-order potential pressures and run-up have 
large variations around the body owing to significant contributions from the angular 
dependent free-surface forcing pressures. 

The present theory and numerical results for bichromatic waves can be directly 
used for estimating the statistics of sum- and difference-frequency wave excitations 
and responses in general Gaussian irregular seas. In this case, the random sea surface 
can be expressed as a sum of N regular wave components : 

N 
[ ( t )  = Re C A,e-'olt (Ar = a,eiEj), 

j-1 

where a5 and E, are the amplitude and phase of the j th  component wave, and the 
random phase ei is uniformly distributed in 0 and 27c. The component amplitude a, 
is given by u5 = (2S(w,) A@)$, where S(w)  is the one-sided wave amplitude spectrum. 
Given the input wave spectrum and the second-order force QTF's, the time series of 
the sum/difference frequency excitations can be directly calculated from 

N N  
F;:(ct) = Re x x [A,Af f3; e-i(wj-wl)t +A,A,f$ e-i(oj+ol) t I, (6.2) 

5-1 I-1 

where the sum- and difference-frequency force QTF's satisfy the symmetry relations, 
f,j =f;: and f$ =A$. Equation (6.2) is equivalent to the two-term Volterra series 
expression (Neal 1974) after performing a double Fourier transform. Upon deriving 
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the autocorrelation function of FL$(t) in continuous form, the one-sided spectra of 
sum- and difference-frequency forces can be obtained : 

S(P) S(P+ w - )  If -(P, P + w-)Ia dp, (6.3) 

A theory for the probability distribution ofFL2((t), which is non-Gaussian, is available, 
and is detailed for example in Neal (1974). 

This research was supported by the US National Science Foundation and the 
Office of Naval Research. DKPY also acknowledges partial support from the Henry 
L. Doherty Chair. Some of the computations were conducted on the Cray X-MP/48 
at the Pittsburgh Supercomputer Center and on the Cray-2S at Cray Research. 

Appendix. Semi-analytic solutions for the second-order sum- and 
difference-frequency forces on a bottom-mounted uniform vertical circular 
cylinder 

For a single regular wave, the closed-form expression for the second-order 
double-frequency horizontal force was obtained by Molin & Marion (1986) and 
Eatock Taylor & Hung (1987), and extended to include the overturning moment also 
in KY-I. Here, we generalize this problem to bichromatic incident waves and sum- 
and difference-frequency forces. For a uniform vertical circular cylinder of radius a 
in water depth h, the explicit expression for the first-order total potential for wave 
component j is 

where a prime represents differentiation with respect to the argument. Substituting 
(A 1) into (4.19) and (4.20) and performing the integration in 8, we obtain the 
quadratic components of the second-order forces, f&, as follows : 

1 - 1 
Q- = 

n5r Hn+l(kj a) H?(k, a) Hn(kj  a) HA,*,,(k, a) ' 

1 sinhk+h sinhk-h 
2[ k+h ' k-h 1' I ' = -  
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The second-order FroudeKrylov excitation QTF's, f&, can be obtained from the 
first integral of (4.21), which yields 

where y$ are given in (2.6) and (2.7). 
The second-order diffraction potential contributions can be evaluated from (4.23) 

in terms of the sum- and difference-frequency assisting radiation potentials for 
horizontal translation, Yz, which have the explicit expressions 

where K is the second-kind modified Bessel function. The coefficients B* in (A 8) are 
given by 

4 sinh k$m h ( m = 0 , 1 , 2  ,... ), " = 2 k m  h + sinh 2kfm h 

where k,, = k,, k,, = iKzm, and K~~ are associated with the evanescent modes and are 
given by the real roots of the dispersion relation 

(A 10) & 2 = -  KZrngtanKZf,th, * (m-i )n  <K$mh<m7C. 

Upon integrating the first right-hand side integral of (4.23), the body forcing 
contribution is obtained in explicit forms : 

sinh (k* + kzm) h sinh (k' - k Z m )  , m = 0 , 1 , 2  ,.... (A12) 
+ k*-k$m * h1 where 

k* + kzm 

From (3.4b) and (A l),  the sum- and difference-frequency free-surface forcing for 
n = 1 are given by 

where A,, is given in (3.16) and 

r, = ZL+~  z i  + ZL z;+~ - J L + ~  JL  - J L  J;,,, (A 14) 

The corresponding difference-frequency terms in (A 14) and (A 15) can be obtained 
by taking the complex conjugate of the terms containing superscript 1. Finally the 
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free-surface forcing contributions in (4.23) are given by the infinite line integral 
whose behaviour is very similar to (3.12): 
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